skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tran, Vinh_Ngoc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pluvial floods pose a significant threat to properties, yet comprehensive impact analysis is hindered by data limitations on pluvial inundation. To assess pluvial flood impacts, we leveraged U.S. flood insurance claims and policy records for a subset of properties outside 100-year floodplains, streamflow records, and nationwide precipitation data, enabling us to distinguish damage claims caused by pluvial floods over 1978–2021. Strikingly, 87.1% of the claims analyzed from this subset were due to pluvial floods. Utilizing these pluvial flood claims unveiled distinct regional patterns of pluvial impacts across the contiguous U.S. These patterns are informed by the relationship between claim frequency and precipitation within each region. Remarkably, despite the pervasiveness of impacts, many states are seeing declining uptake in pluvial flood insurance coverage. Our study highlights regions facing heightened pluvial flood risks and underscores the critical need for enhanced consideration of pluvial inundation within risk management frameworks. 
    more » « less
  2. Abstract Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However,in-situobservations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset ofin-situobservations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960–2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost. 
    more » « less